Google earths

Author: b | 2025-04-24

★★★★☆ (4.5 / 2258 reviews)

csv to.ofx

Google google earth pro download full google earth pro free google earth pro free download google earth pro full google earth pro key google earth pro license key google earth pro mega google earth pro serial دانلود Google Earth Pro دانلود คัดหางเสือเพื่อออกผจญภัยไปใน Google Earth. สำรวจ Google Earth. คัดหางเสือเพื่อออกผจญภัยไปใน Google Earth. คัดหางเสือเพื่อออกผจญภัยไปใน Google Earth

download fiddler free

Google Earth or Earth Studio? - Google Earth Community

Trace Quantities of Thorium from Lanthanide Solutions by the Method of Coprecipitation. Przem. Chem. 1978, 57, 360–362. [Google Scholar]Chi, R.; Xu, Z.; Zhang, Z.; He, Z.; Ruan, Y. Review on separation and treatment of thorium resources. In Proceedings of the Conference of Metallurgists Proceedings, Vancouver, BC, Canada, 28 September–1 October 2014. [Google Scholar]Crouse, D.J.; Brown, K.B. The Amex Process for Extracting Thorium Ores with Alkyl Amines. Ind. Eng. Chem. 1959, 51, 1461–1464. [Google Scholar] [CrossRef]Amaral, J.C.B.S.; Morais, C.A. Thorium and uranium extraction from rare earth elements in monazite sulfuric acid liquor through solvent extraction. Miner. Eng. 2010, 23, 498–503. [Google Scholar] [CrossRef]Borai, E.H.; Shahr El-Din, A.M.; El-Sofany, E.A.; Sakr, A.A.; El-Sayed, G.O. Extraction and Separation of Some Naturally Occurring Radionuclides from Rare Earth Elements by Different Amines. Arab J. Nucl. Sci. Appl. 2014, 47, 48–60. [Google Scholar]Li, D.Q.; Zuo, Y.; Meng, S.L. Separation of thorium(IV) and extracting rare earths from sulfuric and phosphoric acid solutions by solvent extraction method. J. Alloy. Compd. 2004, 374, 431–433. [Google Scholar] [CrossRef]Crouse, D.J.; Brown, K.B. Recovery of Thorium, Uranium and Rare Earths from Monazite Sulfate Liquors by the Amine Extraction (AMEX) Process; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1959. [Google Scholar]Cox, J.J.; Ciuculescu, T.; Altman, K.; Hwozdyk, L. Technical Report on the Eco Ridge Mine Project, Elliot Lake Area, Ontario, Canada; Roscoe Postle Associates Inc.: Toronto, ON, Canada, 2012. [Google Scholar]Chunhua, Y.; Jiangtao, J.; Chunsheng, L.; Sheng, W.; Guangxia, X. Rare Earth Separation in China. Tsingshua Sci. Technol. 2006, 11, 241–247. [Google Scholar]Wang, Y.L.; Li, Y.L.; Li, D.Q.; Liao, W.P. Kinetics of thorium extraction with di-(2-ethylhexyl) 2-ethylhexyl phosphonate from nitric acid medium. Hydrometallurgy 2013, 140, 66–70. [Google Scholar] [CrossRef]Zhao, J.M.; Zuo, Y.; Li, D.Q.; Liu, S.Z. Extraction and separation of cerium(IV) from nitric acid solutions containing thorium(IV) and rare earths(III) by DEHEHP. J. Alloy. Compd. 2004, 374, 438–441. [Google Scholar] [CrossRef]Liu, J.J.; Wang, W.W.; Li, D.Q. Interfacial behavior of primary amine N1923 and the kinetics of thorium(IV) extraction in sulfate media. Colloid Surf. A 2007, 311, 124–130. [Google Scholar] [CrossRef]Cianetti, C.; Danesi, P.R. Kinectics and mechanism in metal solvent extraction by some organophosphorous extractants. In Proceedings of the International Solvent Extraction Conference, ISEC, Denver, CO, USA, 26 August–2 September 1983. [Google Scholar]Biswas, S.; Pathak, P.N.; Singh, D.K.; Roy, S.B. Comparative Evaluation of Tri-n-butyl Phosphate (TBP) and Tris(2-ethylhexyl) Phosphate (TEHP) for the Recovery of Uranium from Monazite Leach Solution. Sep. Sci. Technol. 2013, 48, 2013–2019. [Google Scholar] [CrossRef]Nasab, M.E.; Sam, A.; Milani, S.A. Determination of optimum process conditions for the separation of thorium and rare earth elements by solvent extraction. Hydrometallurgy 2011, 106, 141–147. [Google Scholar] [CrossRef]Gupta, C.K.; Krishnamurthy, N. Extractive Metallurgy of Rare-Earths. Int. Mater. Rev. 1992, 37, 197–248. [Google Scholar] [CrossRef]Lu, Google google earth pro download full google earth pro free google earth pro free download google earth pro full google earth pro key google earth pro license key google earth pro mega google earth pro serial دانلود Google Earth Pro دانلود Y.; Bi, Y.; Bai, Y.; Liao, W. Extraction and separation of thorium and rare earths from nitrate medium withp-phosphorylated calixarene. J. Chem. Technol. Biotechnol. 2013, 88, 1836–1840. [Google Scholar] [CrossRef]Rabie, K.A.; Abdel-Wahaab, S.M.; Mahmoud, K.F.; Hussein, A.E.M.; Abd El-Fatah, A.I. Monazite- Uranium Separation and Purification Applying Oxalic- Nitrate-TBP extraction. Arab J. Nucl. Sci. Appl. 2013, 46, 30–42. [Google Scholar]Zhang, Y.Q.; Xu, Y.; Huang, X.W.; Long, Z.Q.; Cui, D.L.; Hu, F. Study on thorium recovery from bastnaesite treatment process. J. Rare Earths 2012, 30, 374–377. [Google Scholar] [CrossRef]Rakesh, K.B.; Suresh, A.; Rao, P.R.V. Separation of U(VI) and Th(IV) from Nd(III) by Cross-Current Solvent Extraction Mode Using Tri-iso-amyl Phosphate as the Extractant. Solvent Extr. Ion Exch. 2015, 33, 448–461. [Google Scholar] [CrossRef]Li, Y.L.; Lu, Y.C.; Bai, Y.; Liao, W.P. Extraction and separation of thorium and rare earths with 5,11,17,23-tetra (diethoxyphosphoryl)-25,26,27,28-tetraacetoxycalix[4]arene. J. Rare Earths 2012, 30, 1142–1145. [Google Scholar] [CrossRef]Ali, A.M.I.; El-Nadi, Y.A.; Daoud, J.A.; Aly, H.F. Recovery of thorium (IV) from leached monazite solutions using counter-current extraction. Int. J. Miner. Process. 2007, 81, 217–223. [Google Scholar] [CrossRef]He, L.T.; Jiang, Q.; Jia, Y.M.; Fang, Y.Y.; Zou, S.L.; Yang, Y.Y.; Liao, J.L.; Liu, N.; Feng, W.; Luo, S.Z.; et al. Solvent extraction of thorium(IV) and rare earth elements with novel polyaramide extractant containing preorganized chelating groups. J. Chem. Technol. Biot. 2013, 88, 1930–1936. [Google Scholar] [CrossRef]Sato, T. The extraction of uranium (VI) from sulphuric acid solutions by di-(2-ethyl hexyl)-phosphoric acid. J. Inorg. Nucl. Chem. 1962, 24, 699–706. [Google Scholar] [CrossRef]Sato, T. The Extraction of Thorium from Hydrochloric Acid Solutions by di-(2-ethylhexyl)-phosphoric acid. Z. Für Anorg. Und Allg. Chem. 1968, 358, 296–304. [Google Scholar] [CrossRef]Sato, T. Liquid-Liquid Extraction of Rare-Earth Elements from Aqueous Acid Solutions by Acid Organophosphorus Compounds. Hydrometallurgy 1989, 22, 121–140. [Google Scholar] [CrossRef]Gupta, B.; Malik, P.; Deep, A. Extraction of uranium, thorium and lanthanides using Cyanex-923: Their separations and recovery from monazite. J. Radioanal. Nucl. Chem. 2002, 251, 451–456. [Google Scholar] [CrossRef]Karve, M.; Gaur, C. Extraction of U(VI) with Cyanex 302. J. Radioanal. Nucl. Chem. 2007, 273, 405–409. [Google Scholar] [CrossRef]Nasab, M.E.; Milani, S.A.; Sam, A. Extractive separation of Th(IV), U(VI), Ti(IV), La(III) and Fe(III) from Zarigan ore. J. Radioanal. Nucl. Chem. 2011, 288, 677–683. [Google Scholar] [CrossRef]Belova, V.V.; Egorova, N.S.; Voshkin, A.A.; Khol’kin, A.I. Extraction of rare earth metals, uranium, and thorium from nitrate solutions by binary extractants. Theor. Found. Chem. Eng. 2015, 49, 545–549. [Google Scholar] [CrossRef]Singh, H.; Mishra, S.L.; Vijayalakshmi, R. Uranium recovery from phosphoric acid by solvent extraction using a synergistic mixture of di-nonyl phenyl phosphoric acid and tri-n-butyl phosphate. Hydrometallurgy 2004, 73, 63–70. [Google Scholar] [CrossRef]Singh, S.K.; Dhami, P.S.; Tripathi, S.C.; Dakshinamoorthy, A. Studies on the recovery of uranium from phosphoric acid medium using synergistic mixture of

Comments

User4871

Trace Quantities of Thorium from Lanthanide Solutions by the Method of Coprecipitation. Przem. Chem. 1978, 57, 360–362. [Google Scholar]Chi, R.; Xu, Z.; Zhang, Z.; He, Z.; Ruan, Y. Review on separation and treatment of thorium resources. In Proceedings of the Conference of Metallurgists Proceedings, Vancouver, BC, Canada, 28 September–1 October 2014. [Google Scholar]Crouse, D.J.; Brown, K.B. The Amex Process for Extracting Thorium Ores with Alkyl Amines. Ind. Eng. Chem. 1959, 51, 1461–1464. [Google Scholar] [CrossRef]Amaral, J.C.B.S.; Morais, C.A. Thorium and uranium extraction from rare earth elements in monazite sulfuric acid liquor through solvent extraction. Miner. Eng. 2010, 23, 498–503. [Google Scholar] [CrossRef]Borai, E.H.; Shahr El-Din, A.M.; El-Sofany, E.A.; Sakr, A.A.; El-Sayed, G.O. Extraction and Separation of Some Naturally Occurring Radionuclides from Rare Earth Elements by Different Amines. Arab J. Nucl. Sci. Appl. 2014, 47, 48–60. [Google Scholar]Li, D.Q.; Zuo, Y.; Meng, S.L. Separation of thorium(IV) and extracting rare earths from sulfuric and phosphoric acid solutions by solvent extraction method. J. Alloy. Compd. 2004, 374, 431–433. [Google Scholar] [CrossRef]Crouse, D.J.; Brown, K.B. Recovery of Thorium, Uranium and Rare Earths from Monazite Sulfate Liquors by the Amine Extraction (AMEX) Process; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1959. [Google Scholar]Cox, J.J.; Ciuculescu, T.; Altman, K.; Hwozdyk, L. Technical Report on the Eco Ridge Mine Project, Elliot Lake Area, Ontario, Canada; Roscoe Postle Associates Inc.: Toronto, ON, Canada, 2012. [Google Scholar]Chunhua, Y.; Jiangtao, J.; Chunsheng, L.; Sheng, W.; Guangxia, X. Rare Earth Separation in China. Tsingshua Sci. Technol. 2006, 11, 241–247. [Google Scholar]Wang, Y.L.; Li, Y.L.; Li, D.Q.; Liao, W.P. Kinetics of thorium extraction with di-(2-ethylhexyl) 2-ethylhexyl phosphonate from nitric acid medium. Hydrometallurgy 2013, 140, 66–70. [Google Scholar] [CrossRef]Zhao, J.M.; Zuo, Y.; Li, D.Q.; Liu, S.Z. Extraction and separation of cerium(IV) from nitric acid solutions containing thorium(IV) and rare earths(III) by DEHEHP. J. Alloy. Compd. 2004, 374, 438–441. [Google Scholar] [CrossRef]Liu, J.J.; Wang, W.W.; Li, D.Q. Interfacial behavior of primary amine N1923 and the kinetics of thorium(IV) extraction in sulfate media. Colloid Surf. A 2007, 311, 124–130. [Google Scholar] [CrossRef]Cianetti, C.; Danesi, P.R. Kinectics and mechanism in metal solvent extraction by some organophosphorous extractants. In Proceedings of the International Solvent Extraction Conference, ISEC, Denver, CO, USA, 26 August–2 September 1983. [Google Scholar]Biswas, S.; Pathak, P.N.; Singh, D.K.; Roy, S.B. Comparative Evaluation of Tri-n-butyl Phosphate (TBP) and Tris(2-ethylhexyl) Phosphate (TEHP) for the Recovery of Uranium from Monazite Leach Solution. Sep. Sci. Technol. 2013, 48, 2013–2019. [Google Scholar] [CrossRef]Nasab, M.E.; Sam, A.; Milani, S.A. Determination of optimum process conditions for the separation of thorium and rare earth elements by solvent extraction. Hydrometallurgy 2011, 106, 141–147. [Google Scholar] [CrossRef]Gupta, C.K.; Krishnamurthy, N. Extractive Metallurgy of Rare-Earths. Int. Mater. Rev. 1992, 37, 197–248. [Google Scholar] [CrossRef]Lu,

2025-04-22
User9698

Y.; Bi, Y.; Bai, Y.; Liao, W. Extraction and separation of thorium and rare earths from nitrate medium withp-phosphorylated calixarene. J. Chem. Technol. Biotechnol. 2013, 88, 1836–1840. [Google Scholar] [CrossRef]Rabie, K.A.; Abdel-Wahaab, S.M.; Mahmoud, K.F.; Hussein, A.E.M.; Abd El-Fatah, A.I. Monazite- Uranium Separation and Purification Applying Oxalic- Nitrate-TBP extraction. Arab J. Nucl. Sci. Appl. 2013, 46, 30–42. [Google Scholar]Zhang, Y.Q.; Xu, Y.; Huang, X.W.; Long, Z.Q.; Cui, D.L.; Hu, F. Study on thorium recovery from bastnaesite treatment process. J. Rare Earths 2012, 30, 374–377. [Google Scholar] [CrossRef]Rakesh, K.B.; Suresh, A.; Rao, P.R.V. Separation of U(VI) and Th(IV) from Nd(III) by Cross-Current Solvent Extraction Mode Using Tri-iso-amyl Phosphate as the Extractant. Solvent Extr. Ion Exch. 2015, 33, 448–461. [Google Scholar] [CrossRef]Li, Y.L.; Lu, Y.C.; Bai, Y.; Liao, W.P. Extraction and separation of thorium and rare earths with 5,11,17,23-tetra (diethoxyphosphoryl)-25,26,27,28-tetraacetoxycalix[4]arene. J. Rare Earths 2012, 30, 1142–1145. [Google Scholar] [CrossRef]Ali, A.M.I.; El-Nadi, Y.A.; Daoud, J.A.; Aly, H.F. Recovery of thorium (IV) from leached monazite solutions using counter-current extraction. Int. J. Miner. Process. 2007, 81, 217–223. [Google Scholar] [CrossRef]He, L.T.; Jiang, Q.; Jia, Y.M.; Fang, Y.Y.; Zou, S.L.; Yang, Y.Y.; Liao, J.L.; Liu, N.; Feng, W.; Luo, S.Z.; et al. Solvent extraction of thorium(IV) and rare earth elements with novel polyaramide extractant containing preorganized chelating groups. J. Chem. Technol. Biot. 2013, 88, 1930–1936. [Google Scholar] [CrossRef]Sato, T. The extraction of uranium (VI) from sulphuric acid solutions by di-(2-ethyl hexyl)-phosphoric acid. J. Inorg. Nucl. Chem. 1962, 24, 699–706. [Google Scholar] [CrossRef]Sato, T. The Extraction of Thorium from Hydrochloric Acid Solutions by di-(2-ethylhexyl)-phosphoric acid. Z. Für Anorg. Und Allg. Chem. 1968, 358, 296–304. [Google Scholar] [CrossRef]Sato, T. Liquid-Liquid Extraction of Rare-Earth Elements from Aqueous Acid Solutions by Acid Organophosphorus Compounds. Hydrometallurgy 1989, 22, 121–140. [Google Scholar] [CrossRef]Gupta, B.; Malik, P.; Deep, A. Extraction of uranium, thorium and lanthanides using Cyanex-923: Their separations and recovery from monazite. J. Radioanal. Nucl. Chem. 2002, 251, 451–456. [Google Scholar] [CrossRef]Karve, M.; Gaur, C. Extraction of U(VI) with Cyanex 302. J. Radioanal. Nucl. Chem. 2007, 273, 405–409. [Google Scholar] [CrossRef]Nasab, M.E.; Milani, S.A.; Sam, A. Extractive separation of Th(IV), U(VI), Ti(IV), La(III) and Fe(III) from Zarigan ore. J. Radioanal. Nucl. Chem. 2011, 288, 677–683. [Google Scholar] [CrossRef]Belova, V.V.; Egorova, N.S.; Voshkin, A.A.; Khol’kin, A.I. Extraction of rare earth metals, uranium, and thorium from nitrate solutions by binary extractants. Theor. Found. Chem. Eng. 2015, 49, 545–549. [Google Scholar] [CrossRef]Singh, H.; Mishra, S.L.; Vijayalakshmi, R. Uranium recovery from phosphoric acid by solvent extraction using a synergistic mixture of di-nonyl phenyl phosphoric acid and tri-n-butyl phosphate. Hydrometallurgy 2004, 73, 63–70. [Google Scholar] [CrossRef]Singh, S.K.; Dhami, P.S.; Tripathi, S.C.; Dakshinamoorthy, A. Studies on the recovery of uranium from phosphoric acid medium using synergistic mixture of

2025-04-10
User1493

Process for Separating Thorium Compounds from Monazite Sands; Iowa State University: Ames, IA, USA, 1953. [Google Scholar]Amer, T.E.; Abdella, W.M.; Wahab, G.M.A.; El-Sheikh, E.M. A suggested alternative procedure for processing of monazite mineral concentrate. Int. J. Miner. Process. 2013, 125, 106–111. [Google Scholar] [CrossRef]Chi, R.; Xu, Z. A solution chemistry approach to the study of rare earth element precipitation by oxalic acid. Met. Mater Trans B 1999, 30, 189–195. [Google Scholar] [CrossRef]Kul, M.; Topkaya, Y.; Karakaya, I. Rare earth double sulfates from pre-concentrated bastnasite. Hydrometallurgy 2008, 93, 129–135. [Google Scholar] [CrossRef]Fourest, B.; Lagarde, G.; Perrone, J.; Brandel, V.; Dacheux, N.; Genet, M. Solubility of thorium phosphate-diphosphate. New J. Chem. 1999, 23, 645–649. [Google Scholar] [CrossRef]Borai, E.H.; Abd El-Ghany, M.S.; Ahmed, I.M.; Hamed, M.M.; Shahr El-Din, A.M.; Aly, H.F. Modi fi ed acidic leaching for selective separation of thorium, phosphate and rare earth concentrates from Egyptian crude monazite. Int. J. Miner. Process. 2016, 149. [Google Scholar] [CrossRef]Krebs, D.G.I.; Furfaro, D. The Kvanefjeld process. In Proceedings of the Alta 2013 Uranium-REE Conference, Perth, Australia, 25 May–1 June 2013. [Google Scholar]Pawlik, C. Recovery of rare earth elements from complex and low grade deposits. In Proceedings of the ALTA 2013 Uranium-REE Conference, Perth, Australia, 25 May–1 June 2013. [Google Scholar]Vijayalakshmi, R.; Mishra, S.L.; Singh, H.; Gupta, C.K. Processing of xenotime concentrate by sulphuric acid digestion and selective thorium precipitation for separation of rare earths. Hydrometallurgy 2001, 61, 75–80. [Google Scholar] [CrossRef]Bearse, A.E.; Calkins, G.D.; Clegg, J.W.; Filbert, J.R.B. Thorium and rare earths from monazite. Chem. Eng. Prog. 1954, 50, 235–239. [Google Scholar]Mackowski, S.J.; Raiter, R.; Soldenhoff, K.H.; Ho, E.M. Recovery of Rare Earth Elements. U.S. Patent 7,993,612 B2, 9 August 2011. [Google Scholar]Yu, B.; Verbaan, N.; Pearse, G.; Britt, S. Beneficiation and extraction of REE from GEOMEGA resources’ Montviel project. In Proceedings of the Rare Earth Elements (COM 2013), West Westmount, QC, Canada, 30 September–3 October 2013. [Google Scholar]Grimaldi, F.S. The analytical chemistry of uranium and thorium. In Proceedings of the United Nations International Conference on Peaceful Uses of Atomic Energy, Geneva, Switzerland, 8 August 1995; pp. 605–617. [Google Scholar]Tomazic, B.; Branica, M. Separation of uranium(VI) from rare earths(III) by hydrolytic precipitation. Inorg. Nucl. Chem. Lett. 1968, 4, 377–380. [Google Scholar] [CrossRef]Kang, M.J.; Han, B.E.; Hahn, P.S. Precipitation and adsorption of uranium (VI) under various aqueous conditions. Environ. Eng. Res. 2002, 7, 149–157. [Google Scholar]Abreu, R.D.; Morais, C.A. Purification of rare earth elements from monazite sulphuric acid leach liquor and the production of high-purity ceric oxide. Miner. Eng. 2010, 23, 536–540. [Google Scholar] [CrossRef]Carter, G.; Everest, D.A.; Wells, R.A. Selective oxalate precipitation of thorium from sulfate leach solutions derived from monazite sands. J. Appl. Chem. 1960, 10, 149–155. [Google Scholar] [CrossRef]Sozanski, A. Separation of

2025-04-03
User7466

(2-Ethyl hexyl) Phosphonic acid, mono (2-ethyl hexyl) ester (PC88A) and Tri-n-butyl phosphate (TBP). Hydrometallurgy 2009, 95, 170–174. [Google Scholar] [CrossRef]Sreenivasulu, B.; Suresh, A.; Sivaraman, N.; Vasudeva Rao, P.R. Solvent extraction studies with some fission product elements from nitric acid media employing tri-iso-amyl phosphate and tri-n-butyl phosphate as extractants. J. Radioanal. Nucl. Chem. 2014, 303, 2165–2172. [Google Scholar] [CrossRef]Jain, V.K.; Pandya, R.A.; Pillai, S.G.; Shrivastav, P.S. Simultaneous preconcentration of uranium(VI) and thorium(IV) from aqueous solutions using a chelating calix[4]arene anchored chloromethylated polystyrene solid phase. Talanta 2006, 70, 257–266. [Google Scholar] [CrossRef]Patil, N.N.; Shinde, V.M. Extraction study of uranium(VI) and thorium(IV) salicylates with triphenylarsine oxide. J. Radioanal. Nucl. Chem. 1997, 222, 21–24. [Google Scholar] [CrossRef]Singh, H.; Gupta, C.K. Solvent Extraction in Production and Processing of Uranium and Thorium. Miner. Process. Extr. Metall. Rev. 2000, 21, 307–349. [Google Scholar] [CrossRef]Borai, E.H.; Mady, A.S. Separation and quantification of 238U, 232Th and rare earths in monazite samples by ion chromatography coupled with on-line flow scintillation detector. Appl. Radiat. Isot. Incl. Datainstrumentation Methods Use Agric. Ind. Med. 2002, 57, 463–469. [Google Scholar] [CrossRef]Jeyakumar, S.; Mishra, V.G.; Das, M.K.; Raut, V.V.; Sawant, R.M.; Ramakumar, K.L. Separation behavior of U(VI) and Th(IV) on a cation exchange column using 2,6-pyridine dicarboxylic acid as a complexing agent and its application for the rapid separation and determination of U and Th by ion chromatography. J. Sep. Sci. 2011, 34, 609–616. [Google Scholar] [CrossRef]Pin, C.; Zalduegui, J.F.S. Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: Application to isotopic analyses of silicate rocks. Anal. Chem. Acta 1997, 339, 79–89. [Google Scholar] [CrossRef]Soran, M.L.; Curtui, M.; Marutoiu, C. Separation of U(VI) and Th(IV) from some rare earths by thin layer chromatography with di-(2-ethylhexyl)-dithiophosphoric acid on silica gel. J. Liq. Chromatogr. Relat. Technol. 2005, 28, 2515–2524. [Google Scholar] [CrossRef]Sivaraman, N.; Kumar, R.; Subramaniam, S.; Rao, P.R.V. Separation of lanthanides using ion-interaction chromatography with HDEHP coated columns. J. Radioanal. Nucl. Chem. 2002, 252, 491–495. [Google Scholar] [CrossRef]Ostapenko, V.; Vasiliev, A.; Lapshina, E.; Ermolaev, S.; Aliev, R.; Totskiy, Y.; Zhuikov, B.; Kalmykov, S. Extraction chromatographic behavior of actinium and REE on DGA, Ln and TRU resins in nitric acid solutions. J. Radioanal. Nucl. Chem. 2015, 306, 707–711. [Google Scholar] [CrossRef]Ling, L.; Wang, N.H. Ligand-assisted elution chromatography for separation of lanthanides. J. Chromatogr. A 2015, 1389, 28–38. [Google Scholar] [CrossRef]Soran, M.-L.; Hodişan, T.; Curtui, M.; Casoni, D. TLC separation of rare earths using di(2-ethylhexyl)dithiophosphoric acid as complexing reagent. J. Planar Chromatogr. Mod. Tlc 2005, 18, 160–163. [Google Scholar] [CrossRef]Korkisch, J.; Hazan, I. Anion-exchange behaviour of uranium and other elements in the presence of aliphatic di- and tricarboxylic acids. Talanta 1964, 11, 523–530. [Google Scholar] [CrossRef]Dev, K.; Pathak, R.; Rao, G.N. Sorption behaviour of

2025-04-17
User5063

DC’s Legends of Tomorrow and Batwoman will also stop at nothing to save every earth that they can.Full details on how to watch the ninth installment of The Flash‘s sixth season (and the third installment of Crisis On Infinite Earths) can be found below, including start time, TV info, live stream and more:-->Full details on how to watch the ninth installment of The Flash‘s sixth season (and the third installment of Crisis On Infinite Earths) can be found below, including start time, TV info, live stream and more:Date: Tuesday, Dec. 10Time: 8:00 p.m. ETSeason: 6Episode: 9 “Crisis On Infinite Earths, Part Three”TV info: The CWLive stream: CWTV.com-->Date: Tuesday, Dec. 10Time: 8:00 p.m. ETSeason: 6Episode: 9 “Crisis On Infinite Earths, Part Three”TV info: The CWLive stream: CWTV.com“Crisis On Infinite Earths, Part Three” will air first on The CW this Tuesday night before it is uploaded to CWTV the next day – where it will be available to stream for five weeks.-->“Crisis On Infinite Earths, Part Three” will air first on The CW this Tuesday night before it is uploaded to CWTV the next day – where it will be available to stream for five weeks.Are you excited to see the third installment of the Crisis crossover? How will you be watching it? Let us know in the comments below!-->Are you excited to see the third installment of the Crisis crossover? How will you be watching it? Let us know in the comments below!

2025-03-27

Add Comment